In vivo mitochondrial p53 translocation triggers a rapid first wave of cell death in response to DNA damage that can precede p53 target gene activation.
نویسندگان
چکیده
p53 promotes apoptosis in response to death stimuli by transactivation of target genes and by transcription-independent mechanisms. We recently showed that wild-type p53 rapidly translocates to mitochondria in response to multiple death stimuli in cultured cells. Mitochondrial p53 physically interacts with antiapoptotic Bcl proteins, induces Bak oligomerization, permeabilizes mitochondrial membranes, and rapidly induces cytochrome c release. Here we characterize the mitochondrial p53 response in vivo. Mice were subjected to gamma irradiation or intravenous etoposide administration, followed by cell fractionation and immunofluorescence studies of various organs. Mitochondrial p53 accumulation occurred in radiosensitive organs like thymus, spleen, testis, and brain but not in liver and kidney. Of note, mitochondrial p53 translocation was rapid (detectable at 30 min in thymus and spleen) and triggered an early wave of marked caspase 3 activation and apoptosis. This caspase 3-mediated apoptosis was entirely p53 dependent, as shown by p53 null mice, and preceded p53 target gene activation. The transcriptional p53 program had a longer lag phase than the rapid mitochondrial p53 program. In thymus, the earliest apoptotic target gene products PUMA, Noxa, and Bax appeared at 2, 4, and 8 h, respectively, while Bid, Killer/DR5, and p53DinP1 remained uninduced even after 20 h. Target gene induction then led to further increase in active caspase 3. Similar biphasic kinetics was seen in cultured human cells. Our results suggest that in sensitive organs mitochondrial p53 accumulation in vivo occurs soon after a death stimulus, triggering a rapid first wave of apoptosis that is transcription independent and may precede a second slower wave that is transcription dependent.
منابع مشابه
The Role of chk2 in Response to DNA Damage in Cancer Cells
Accumulation of gene changes and chromosomal instability in response to cellular DNA damage lead to cancer. DNA damage induces cell cycle checkpoints pathways. Checkpoints regulate DNA replication and cell cycle progression, chromatin restructuring, and apoptosis. Checkpoint kinase 2 (chk2) is activated in response to DNA lesions. ATM phosphorylate chk2. The activated Chk2 kinase can phosphoryl...
متن کاملMutations of p53 Gene in Skin Cancers: a Case Control Study
Background: The most frequently mutated tumor suppressor gene found in human cancer is p53. In a normal situation, p53 is activated upon the induction of DNA damage to either arrest the cell cycle or to induce apoptosis. However, when mutated, p53 is no longer able to properly accomplish these functions. The aim of this study was to investigate the expression of p53 gene in cases of skin cancer...
متن کاملDoxorubicin and Doxorubicin-loaded Nanoliposome Triggers Hepatocyte Cells Senescence through Accumulation of Inflammatory Factors and Activation of P53
Background and purpose: Induction of cellular senescence is indicative of new strategy to prevent abnormal proliferation of cancer cells. Doxorubicin (DOX) is gaining attention for its neoplasia suppressive and inhibitory properties, but its clinical utility is limited due to irreversible effects on non-target cells/tissues. In this way, nanoliposomal structures were developed in drug delivery ...
متن کاملCuO nanoparticles induce cytotoxicity and apoptosis in human K562 cancer cell line via mitochondrial pathway, through reactive oxygen species and P53
Objective(s): This study focused on determining cytotoxic effects of copper oxide nanoparticles (CuO NPs) on chronic myeloid leukemia (CML) K562 cell line in a cell-specific manner and its possible mechanism of cell death. We investigated the cytotoxicity of CuO NPs against K562 cell line (cancerous cell) and peripheral blood mononuclear cell (normal cell). Materials and Methods: The toxicity w...
متن کاملMitochondrial translocation of p53 underlies the selective death of hippocampal CA1 neurons after global cerebral ischaemia.
p53, a tumour suppressor, is involved in DNA repair and cell death processes and mediates apoptosis in response to death stimuli by transcriptional activation of pro-apoptotic genes and by transcription-independent mechanisms. In the latter process, p53 induces permeabilization of the outer mitochondrial membrane by forming an inhibitory complex with a protective Bcl-2 family protein, resulting...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Molecular and cellular biology
دوره 24 15 شماره
صفحات -
تاریخ انتشار 2004